Subscribe:

วันจันทร์ที่ 20 มิถุนายน พ.ศ. 2554

Lesson 2

Plate tectonic  theory
Plate tectonics (from the Late Latin tectonicus, from the Greek: τεκτονικός "pertaining to building")[1] is a scientific theory which describes the large scale motions of Earth's lithosphere. The theory builds on the older concepts of continental drift, developed during the first decades of the 20th century (one of the most famous advocates was Alfred Wegener), and was accepted by the majority of the geoscientific community when the concepts of seafloor spreading were developed in the late 1950s and early 1960s. The lithosphere is broken up into what are called tectonic plates. In the case of the Earth, there are currently seven to eight major (depending on how they are defined) and many minor plates. The lithospheric plates ride on the asthenosphere. These plates move in relation to one another at one of three types of plate boundaries: convergent, or collisional boundaries; divergent boundaries, also called spreading centers; and conservative transform boundaries. Earthquakes, volcanic activity, mountain-building, and oceanic trench formation occur along these plate boundaries. The lateral relative movement of the plates varies, though it is typically 0–100 mm annually


Pangaea
Pangaea, Pangæa, or Pangea (pronounced /pænˈdʒiːə/ pan-jee-ə,[1] from Ancient Greek πᾶν pan "entire", and Γαῖα Gaia "Earth", Latinized as Gæa) was the supercontinent that existed during the Paleozoic and Mesozoic eras about 250 million years ago, before the component continents were separated into their current configuration.The name was coined during a 1926 symposium discussing Alfred Wegener's theory of continental drift. In his book The Origin of Continents and Oceans (Die Entstehung der Kontinente und Ozeane) first published in 1915, he postulated that all the continents had at one time formed a single supercontinent which he called the "Urkontinent", before later breaking up and drifting to their present locations.The single enormous ocean which surrounded Pangaea was accordingly named Panthalassa
 
Changes in the crust:
1. Stratigraphy of the arc. Change the properties of the rock that is plastic. Can be classified into two types of rock layers bend bend the hood. The curve is a curve of the roof of the boat rocks the hood up. A curve that curves down

2. The faults are classified into three categories - normal faults. A fault with the dip of the plane of motion. The stone ceiling moves down - reverse faults. A fault with the dip of the plane of motion. The ceiling has moved up the rock - along the fault. A fault with the dip of the plane of motion through 90 degrees.




Continental slope
The continental shelf is the extended perimeter of each continent and associated coastal plain. Much of the shelf was exposed during glacial periods, but is now submerged under relatively shallow seas (known as shelf seas) and gulfs, and was similarly submerged during other interglacial periods.The continental margin, between the continental shelf and the abyssal plain, comprises a steep continental slope followed by the flatter continental rise. Sediment from the continent above cascades down the slope and accumulates as a pile of sediment at the base of the slope, called the continental rise. Extending as far as 500 km from the slope, it consists of thick sediments deposited by turbidity currents from the shelf and slope. The continental rise's gradient is intermediate between the slope and the shelf, on the order of 0.5-1°.



Karoo Ice Age
The Karoo Ice Age from 360–260 Ma (million years ago) was the second major ice age of the Phanerozoic Eon. It is named after the glacial tills found in the Karoo region of South Africa where evidence for this ice age was first clearly identified

Mesosaurus

had a long skull that was larger than that of Stereosternum and had longer teeth. The teeth are angled outwards, especially those at the tips of the jaws. The bones of the postcranial skeleton are thick, having undergone pachyostosis. Mesosaurus is unusual among reptiles in that it possesses a cleithrum. A cleithrum is a type of dermal bone that overlies the scapula, and is usually found in more primitive bony fish and tetrapods. The head of the interclavicle of Mesosaurus is triangular, unlike those of other early reptiles, which are diamond-shaped


LystrosaurusLystrosaurus (meaning "shovel lizard", pronounced /ˌlɪstrəˈsɔrəs/) was a genus of Late Permian and Early Triassic Period dicynodont therapsids, which lived around 250 million years ago in what is now Antarctica, India, and South Africa. Four to six species are currently recognized, although from the 1930s to 1970s the number of species was thought to be much higher.Being a dicynodont, Lystrosaurus had only two teeth, a pair of tusk-like canines, and is thought to have had a horny beak that was used for biting off pieces of vegetation. Lystrosaurus was a heavily-built, herbivorous animal, approximately the size of a pig. The structure of its shoulders and hip joints suggest that Lystrosaurus moved with a semi-sprawling gait. The forelimbs were even more robust than the hindlimbs, and the animal is thought to have been a powerful digger that nested in burrows

CynognathusCynognathus crateronotus was a metre-long predator of the Early to Middle Triassic. It was one of the more mammal-like of the "mammal-like reptiles", a member of a grouping called Eucynodontia. The genus Cynognathus had an almost worldwide distribution. Fossils have so far been recovered from South Africa, South America, China and Antarctica
The tectonic assembly of the continents of Euramerica (later with the Uralian orogeny, into Laurasia) and Gondwanaland into Pangaea, in the Hercynian-Alleghany Orogeny, made a major continental landmass within the Antarctic region, and the closure of the Rheic Ocean and Iapetus Ocean saw disruption of warm water currents in the Panthalassa Ocean and Paleotethys Sea, which led to progressive cooling of summers, and the snowfields accumulating in winters, causing mountainous alpine glaciers to grow, and then spread out of highland areas, making continental glaciers which spread to cover much of Gondwanaland


Glossopteris
The Glossopteridales arose in the Southern Hemisphere around the beginning of the Permian (299 million years ago). Their distribution across several, now detached, landmasses led Eduard Suess, amongst others, to propose that the southern continents were once amalgamated into a single supercontinent - Gondwana. These plants went on to become the dominant elements of the southern flora through the rest of the Permian but disappeared in almost all places at the end of the Permian (251 million years ago). The only convincing Triassic records are very earliest Triassic leaves from Nidpur, India, but even these records are somewhat questionable owing to faulting and complex juxtapositioning of Permian and Triassic strata at Nidpur. Although most modern palaeobotany textbooks cite the continuation of glossopterids into later parts of the Triassic and, in some cases into the Jurassic, these ranges are erroneous and are based on misidentification of morphologically similar leaves such as Gontriglossa, Sagenopteris, or Mexiglossa. Glossopterids were, thus, one of the major casualties of the end-Permian mass-extinction event

Oceanic ridge
 continuous submarine mountain chain extending approximately 80,000 km (50,000 miles) through all the world’s oceans. Individually, ocean ridges are the largest features in ocean basins. Collectively, the oceanic ridge system is the most prominent feature on Earth’s surface after the continents and the ocean basins themselves. In the past these features were referred to as mid-ocean ridges, but, as will be seen, the largest oceanic ridge, the East Pacific Rise, is far from a mid-ocean location, and the nomenclature is thus inaccurate. Oceanic ridges are not to be confused with aseismic ridges, which have an entirely different origin. ridge



Paleomagnetism
Paleomagnetism is the study of the record of the Earth's magnetic field in rocks. Certain minerals in rocks lock-in a record of the direction and intensity of the magnetic field when they form. This record provides information on the past behavior of Earth's magnetic field and the past location of tectonic plates. The record of geomagnetic reversals preserved in volcanic and sedimentary rock sequences (magnetostratigraphy) provides a time-scale that is used as a geochronologic tool. Geophysicists who specialize in paleomagnetism are called paleomagnetists.

Convection cell
A convection cell is a phenomenon of fluid dynamics that occurs in situations where there are density differences within a body of liquid or gas. The convection usually requires a gravitational field but in microgravity experiments, thermal convection has been observed without gravitational effects being needed.Fluids are materials that exhibit the property of flow. Both gases and liquids have fluid properties, and in sufficient quantity, even particulate solids such as salt, grain, and gravel show some fluid properties. When a volume of fluid is heated, it expands and becomes less dense and thus more buoyant than the surrounding fluid. The colder, denser fluid settles underneath the warmer, less dense fluid and forces it to rise. Such movement is called convection, and the moving body of liquid is referred to as a convection cell. This particular type of convection, where a horizontal layer of fluid is heated from below, is known as Rayleigh-Bénard convection.
Plate
The Earth's rocky outer crust solidified billions of years ago, soon after the Earth formed. This crust is not a solid shell; it is broken up into huge, thick plates that drift atop the soft, underlying mantle.The plates are made of rock and drift all over the globe; they move both horizontally (sideways) and vertically (up and down). Over long periods of time, the plates also change in size as their margins are added to, crushed together, or pushed back into the Earth's mantle. These plates are from 50 to 250 miles (80 to 400 km) thick



Continental plate       
The current continental and oceanic plates include: the Eurasian plate, Australian-Indian plate, Philippine plate, Pacific plate, Juan de Fuca plate, Nazca plate, Cocos plate, North American plate, Caribbean plate, South American plate, African plate, Arabian plate, the Antarctic plate, and the Scotia plate. These plates consist of smaller sub-plates

Oceanic plate
The theory of plate tectonics (meaning "plate structure") was developed in the 1960's. This theory explains the movement of the Earth's plates (which has since been documented scientifically) and also explains the cause of earthquakes, volcanoes, oceanic trenches, mountain range formation, and many other geologic phenomenon

Divergent  plates
In plate tectonics, a divergent boundary or divergent plate boundary (also known as a constructive boundary or an extensional boundary) is a linear feature that exists between two tectonic plates that are moving away from each other. Divergent boundaries within continents initially produce rifts which produce rift valleys. Most active divergent plate boundaries occur between oceanic plates and exist as mid-oceanic ridges. Divergent boundaries also form volcanic islands which occur when the plates move apart to produce gaps which molten lava rises to fill

Convergent plates
In plate tectonics, a convergent boundary, also known as a destructive plate boundary (because of subduction), is an actively deforming region where two (or more) tectonic plates or fragments of lithosphere move toward one another and collide. As a result of pressure, friction, and plate material melting in the mantle, earthquakes and volcanoes are common near convergent boundaries. When two plates move towards one another, they form either a subduction zone or a continental collision



Transform plates
A transform fault or transform boundary, also known as conservative plate boundary since these faults neither create nor destroy lithosphere. This is a type of fault whose relative motion is predominantly horizontal in either sinistral or dextral direction. Furthermore, transform faults end abruptly and are connected on both ends to other faults, ridges, or subduction zones

Fold
The term fold is used in geology when one or a stack of originally flat and planar surfaces, such as sedimentary strata, are bent or curved as a result of permanent deformation. Synsedimentary folds are those due to slumping of sedimentary material before it is lithified. Folds in rocks vary in size from microscopic crinkles to mountain-sized folds. They occur singly as isolated folds and in extensive fold trains of different sizes, on a variety of scales. Folds form under varied conditions of stress, hydrostatic pressure, pore pressure, and temperature - hydrothermal gradient, as evidenced by their presence in soft sediments, the full spectrum of metamorphic rocks, and even as primary flow structures in some igneous rocks. A set of folds distributed on a regional scale constitutes a fold belt, a common feature of orogenic zones

Axial plane
The transverse plane (also called the horizontal plane, axial plane, or transaxial plane) is an imaginary plane that divides the body into superior and inferior parts. It is perpendicular to the coronal and sagittal planes.
Fault
In geology, a fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement. Large faults within the Earth's crust result from the action of tectonic forces. Energy release associated with rapid movement on active faults is the cause of most earthquakes, such as occurs on the San Andreas Fault, California.A fault line is the surface trace of a fault, the line of intersection between the fault plane and the Earth's surface

Normal fault
Normal faults generally occur in places where the lithosphere is being stretched. Consequently they are the chief structural components of many sedimentary rift basins (e.g. the North Sea) where they have major significance for hydrocarbon exploration. They can also be found in deltas, at the rear edges of huge gravitation slumps and slides. Normal faults can show diffeent geometries - and a few are shown here. In some situations the faults can become gently dipping at depth so that they have a spoon (or listric) shape. Other normal faults are found in batches, dipping in the same direction, with rotated fault blocks between. These are termed domino faults. Although most active normal faults can be shown to dip at angles steeper than 50 degrees, there are examples of very low-angle normal faults. These are often termed "detachments" - although this is a pretty vague term! Detachments show gentle dips and often expose high grade metamorphic rocks in their footwalls. These footwalls can be termed metamorphic core complexes.

Reverse fault
Reverse faults are exactly the opposite of normal faults. If the hanging wall rises relative to the footwall, you have a reverse fault. Reverse faults occur in areas undergoing compression (squishing). If you imagine undoing the motion of a reverse fault, you will undo the compression and thus lengthen the horizontal distance between two points on either side of the fault.

Strike-slip fault
STRIKE-SLIP FAULTS  Displace rock units along strike  Steeply dipping faults  Horizontal displacement

วันอาทิตย์ที่ 19 มิถุนายน พ.ศ. 2554

Lesson 1

P-waves
are type of elastic wave, also called seismic waves, that can travel through gases (as sound waves), solids and liquids, including the Earth. P-waves are produced by earthquakes and recorded by seismographs. The name P-wave stands either for primary wave, as it has the highest velocity and is therefore the first to be recorded, or pressure wave,[1] as it is formed from alternating compressions and rarefactions.In isotropic and homogeneous solids, the polarization of a P-wave is always longitudinal; thus, the particles in the solid have vibrations along or parallel to the travel direction of the wave energy.



S-wave
can also refer to the lowest energy electronic wavefunction in atomic physics; see atomic orbital.A type of seismic wave, the S-wave, secondary wave, or shear wave (sometimes called an elastic S-wave) is one of the two main types of elastic body waves, so named because they move through the body of an object, unlike surface waves.The S-wave moves as a shear or transverse wave, so motion is perpendicular to the direction of wave propagation: S-waves are like waves in a rope, as opposed to waves moving through a slinky, the P-wave. The wave moves through elastic media, and the main restoring force comes from shear effects. These waves do not diverge, and they obey the continuity equation for incompressible media



Lithosphere
In the Earth, the lithosphere includes the crust and the uppermost mantle, which constitute the hard and rigid outer layer of the Earth. The lithosphere is underlain by the asthenosphere, the weaker, hotter, and deeper part of the upper mantle. The boundary between the lithosphere and the underlying asthenosphere is defined by a difference in response to stress: the lithosphere remains rigid for very long periods of geologic time in which it deforms elastically and through brittle failure, while the asthenosphere deforms viscously and accommodates strain through plastic deformation. The lithosphere is broken into tectonic plates. The uppermost part of the lithosphere that chemically reacts to the atmosphere, hydrosphere and biosphere through the soil forming process is called the pedosphere.



Asthenosphere
The asthenosphere is a portion of the upper mantle just below the lithosphere that is involved in plate tectonic movements and isostatic adjustments. In spite of its heat, pressures keep it plastic, and it has a relatively low density. Seismic waves pass relatively slowly through the asthenosphere, compared to the overlying lithospheric mantle, thus it has been called the low-velocity zone (LVZ), although the two are not exactly the same. The lower boundary of the LVZ lies at a depth of 180–220 km,[1] whereas the base of the asthenosphere lies at a depth of about 700 km.[2] This was the observation that originally alerted seismologists to its presence and gave some information about its physical properties, as the speed of seismic waves decreases with decreasing rigidity.Under the thin oceanic plates the asthenosphere is usually much closer to the seafloor surface, and at mid-ocean ridges it rises to within a few kilometers of the ocean floor



Mesosphere
The mesosphere (pronounced /ˈmɛsoʊsfɪər/; from the Greek words mesos = middle and sphaira = ball) is the layer of the Earth's atmosphere that is directly above the stratosphere and directly below the thermosphere. In the mesosphere temperature decreases with increasing height. The upper boundary of the mesosphere is the mesopause, which can be the coldest naturally-occurring place on Earth with temperatures below 130 K. The exact upper and lower boundaries of the mesosphere vary with latitude and with season, but the lower boundary of the mesosphere is usually located at heights of about 50 km above the Earth's surface and the mesopause is usually at heights near 100 km, except at middle and high latitudes in summer where it descends to heights of about 85 km



Outer core
The outer core of the Earth is a liquid layer about 2,266 kilometers thick composed of iron and nickel which lies above the Earth's solid inner core and below its mantle. Its outer boundary lies 2,890 km (1,800 mi) beneath the Earth's surface. The transition between the inner core and outer core is located approximately 5,150 km beneath the Earth's surface.The temperature of the outer core ranges from 4400 °C in the outer regions to 6100 °C near the inner core. Because of its high temperature, modeling work has shown that the outer core is a low viscosity fluid (about ten times the viscosity of liquid metals at the surface) that convects turbulentl.



Inner core
The inner core of the Earth, its innermost hottest part as detected by seismological studies, is a primarily solid sphere about 1,216 km (760 mi) in radius, or about 70% that of the Moon. It is believed to consist of an iron-nickel alloy, and may have a temperature similar to the Sun's surface, approximately 5778 K (5505 °C)




Crust
In geology, the crust is the outermost solid shell of a rocky planet or natural satellite, which is chemically distinct from the underlying mantle. The crusts of Earth, our Moon, Mercury, Venus, Mars, Io, and other planetary bodies have been generated largely by igneous processes, and these crusts are richer in incompatible elements than their respective mantles

Mohorovicic discontinuity
The Mohorovičić discontinuity (Croatian pronunciation: [mɔhɔˈrɔvitʃitɕ]) (MOE-HOE-ROE-vee-cheech), usually referred to as the Moho, is the boundary between the Earth's crust and the mantle. Named after the pioneering Croatian seisomologist Andrija Mohorovičić, the Moho separates both oceanic crust and continental crust from underlying mantle. The Moho mostly lies entirely within the lithosphere; only beneath mid-ocean ridges does it define the lithosphere – asthenosphere boundary. The Mohorovičić discontinuity was first identified in 1909 by Mohorovičić, when he observed that seismograms from shallow-focus earthquakes had two sets of P-waves and S-waves, one that followed a direct path near the Earth's surface and the other refracted by a high velocity medium.

Mantle
The mantle is a part of a terrestrial planet or other rocky body large enough to have differentiation by density. The interior of the Earth, similar to the other terrestrial planets, is chemically divided into layers. The mantle is a highly viscous layer between the crust and the outer core. Earth's mantle is a rocky shell about 2,890 km (1,800 mi) thick[1] that constitutes about 84 percent of Earth's volume.[2] It is predominantly solid and encloses the iron-rich hot core, which occupies about 15 percent of Earth's volume.[2][3] Past episodes of melting and volcanism at the shallower levels of the mantle have produced a thin crust of crystallized melt products near the surface, upon which we live

Core
In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group. The two most common types are the normal core of a subgroup and the p-core of a group

วันจันทร์ที่ 13 มิถุนายน พ.ศ. 2554

แบบฝึกหัดบทที่ 4

1.นักวิทยาศาสตร์ทราบได้อย่างไรว่า ครั้งหนึ่งบนโลกมีไดโนเสาร์อาศัยอยุ่
ตอบ  การค้นพบซากดึกดำบรรพ์



2.เพราะเหตุใดเราจึงค้นไม่ค่อยค้นพบซากดึกดำบรรพ์ในกลุ่มหินอัคนี และหินแปร
ตอบ  เพราะหินอัคนีนั้นคือหินภูเขาที่พ่นออกมาและแข็งตัวลงดังนั้นจึงเป็นการยากที่จะพบฟอสซิล 
และหินแปรเป็นที่มีการแปรสภาพโดยความกดดันและความร้อนจึงเป็นเรื่องยากที่จะพบฟอสซิล

3.ซากดึกดำบรรพ์ที่ค้นพบสามารถบอกอะไรแก่เราได้บ้าง
ตอบ 
1.บอกอายุของสิ่งมีชีวิเจ้าของฟอสซิล
       2.บอกสภาพแวดล้อมในขนาดที่สิ่งมีชีวิตเจ้าของฟอสซิลยังดำรงชีวิตอยู่
       3.บอกลักษณะของสิ่งมีชีวิตเจ้าของฟอสซิล
       4. บอกสาเหตุการตายของสิ่งมีชีวิตเจ้าของฟอสซิล

4.ซากดึกดำบรรพ์ที่ดีและบ่งชี้อายุหินได้ชัดเจนควรเป็นอย่างไร อธิบายพร้อมยกตัวอย่างเท่าที่ทราบ
ตอบ  ควรมีลักษณะสมบูรณ์ใกล้เคียงกับลักษณะตอนที่สิ่งมีชีวิตเจ้าของซากฟอสซิลนั้นยังมีชีวิตอยู่
เช่น ซากฟอสซิลช้างแมมอธชื่อลิวบาที่มีสภาพสมบูรณ์จากกาารถูกแช่แข็งหรือซากแมลง ที่อยู่ในอำพันซึ่งเกิดจากยางไม้

5.การลำดับชั้นหินและซากดึกดำบรรพ์ที่พบ มีความสำคัญอย่างไรกับการศึกษาความเป็นมาของโลก
ตอบ  เพราะซากฟอสซิลและลำดับชั้นหินนั้นสามารถบอกได้ถึงอายุและความเก่าแก่ของเจ้าของซอสซิล  
สภาพความเป็นอยู่ในขนาดมีชีวิตรวมไปถึงสาเหตุของการตายของสิ่งมีชีวิตซึ่งล้วนแล้วแต่เชื่อมโยงไปยังสภาพแวดล้อมของโลก ในโดยซึ่งศึกษาจากหลักฐานทางเคมีในชั้นดินเช่น การศึกษาการสูญพันธุ์ของไดโดนเสาร์ไปจากโลกโดย การศึกษาซากฟอสซิลที่มีอายุอยู่ในช่วงนั้น และตรวจสอบชั้นดินในขนาดนั้นเพื่อวิเคราะห์สาเหตุที่แท้จริง

6.ถ้านักเรียนสำรวจพบซากดึกดำบรรพ์ของปะการังบนยอดเขาแห่งหนึ่ง นักเรียนมีความเห็นเกี่ยวกับการดำเนินของภูเขานั้นอย่างไร จงอธิบายตอบ   1) ภูเขาลูกนี้เกิดจากอยู่ยกตัวของพื้นดินที่มีสาเหตุมาจากการเคลื่อนที่ของแผ่นธรณี ทำให้ภูเขายกตัวขึ้นมาพ้นน้ำ
         2) เกิดจากการลดลงของระดับน้ำทะเลทำให้ภูเขาใต้มหาสมุทรโผล่ขึ้นมาจากน้ำ จาก 2 กรณียังไม่สามารถสรุปได้แน่นอน เพราะยังขาดหลักฐานอื่นที่ทำให้เชื่อได้ว่าเกิดจากกรณีใดกรณีหนึ่ง
 

แบบฝึกหัดบทที่ 3

1.อธิบายความแตกต่างระหว่างคำต่อไปนี้ "ศูนย์เกิดแผ่นดินไหว" กับ "จุดเหนือศูนย์เกิดแผ่นดินไหว"ตอบ  -ศูนย์เกิดแผ่นดินไหว คือ ตำแหน่งที่เป็นจุดกำเนิดการไหวสะเทือนของแผ่นดินหรือเกิดแผ่นดินไหว เกิดได้หลายจุดในพื้นที่ตามแนวรอยเลื่อน
        -จุดเหนือศูนย์เกอดแผ่นดินไหว คือ ศูนย์เกิดแผ่นดินไหว จะอยู่ใต้ผิวโลกที่ระดับความลึกต่างๆน ตำแหน่งบนผิวโลกที่อยู่เหนือศูนย์เกิดแผ่นดินไหว

2.แนวที่เกิดแผ่นดินไหวและภูเขาไฟระเบิดส่วนใหญ่จะอยู่บริเวณใดของพื้นโลก ในประเทศไทยมีแนวที่เสี่ยงต่อการเกิดแผ่นดินไหวและภูเขาไฟระเบิดหรือไม่ อยู่บริเวณใดตอบ  ตามแนวรอยต่อ ประเทศมีความสเยงน้อยมาก ส่วนใหญ่จะเกิดจากการเกิดสั่นไหว ของประเทศข้างเคียงทำให้ได้รับแรงสั่นสะเทือน

3.แมกมาที่แทรกตัวอยู่ตามรอยแตก รอยแยกของหินใต้พื้นผิวโลก เมื่อแข็งตัวจะกลายเป็นหินชนิดใด
ตอบ  หินไรโอไลต์,หินแอนดีไซต์,หินบะซอลต์,หินทัฟฟ์,หินแอกโกเมอเรต,หินพัมมิซ,หินสคอเรีย,หินออบซีเดียน เป็นต้น

4.อะไรคือสาเหตุที่ทำให้เกิดแผ่นดินไหวตอบ  การเคลื่อนที่ของแผ่นธรณี ทำให้หินเปลี่ยนลักษณะเลื่อนตัวแตกตัว และถ่ายโอนพลังงาน อย่างรวดเร็วให้กับพื้นที่ติดกันในรูปของคลื่นไหวสะเทือน
5.ท่านคิดอย่างไรจากคำกล่าวที่ว่า"ภูเขาไฟเป็นเสมือนหน้าต่างที่สามารถมองเห็นถึงภายในของโลก"
ตอบ  เป้นการเปรียบเทียบถึงการทีเราสารมารถนำวัตถุที่ภูเขาไฟพ่นนำออกมาศึกษา และองค์ประกอบของหินสารถนำมาวิเคราะห์ได้

6.บอกประโยชน์และโทษของการเกิดแผ่นดินไหว และภูเขาไฟระเบิดตอบ  ประโยชน์ของภูเขาไฟระเบิด           1) ทำให้เกิดแผ่นดินใหม่
           2) แร่ธาตุมหาศาลทำให้เกิดความอุดมสมบูรณ์บนพื้นดิน
        โทษของภูเขาไฟ          1) สร้างความเสียหายอย่างหนักต่อชีวิตและทรัพย์ต่อพื้นที่โดยรอบ
          2) ภูเขาไฟทำให้เกิดควันพิษและเขม่าปริมาณมหาศาลขึ้นชั้นบรรยากาศทำให้โลกเสียสมดุล

7.อธิบายความหมายของคำต่อไปนี้ "ภูเขาไฟมีพลัง" และ"คาบอุบัติซ้ำ"
ตอบ    ภูเขาไฟมีพลัง หมายถึง ภูเขาไฟที่ยังสามารถประทุขึ้นได้อีก
          คาบอุบัติซ้ำ  หมายถึง ระยะเวลาครบรอบของแผ่นดินไหวที่เคยเกิดขึ้น ณ ที่ใดที่หนึ่ง

แบบฝึกหัดบทที่ 2

1.หลักฐานที่แสดงว่าทวีปต่างๆเคยเชื่อมต่อกันมีอะไรบ้าง
ตอบ  หลักฐานรูปร่างของทวีปที่สามารถเชื่อมต่อกันได้ , การพบซากดึกดำบรรพ์ชนิดเดียวกัน ,การพบกลุ่มหินประเภท และ อายุเดียวกัน , แนวเทือกเขาที่มีลักษณะเหมือนกันและต่อกันได้ การพบหินอายุเดียวกันที่เกิดจากการสะสมตัวตะกอนธารน้ำแข็ง

 2.นักเรียนเข้าใจเกี่ยวกับการเคลื่อนที่ของทวีปอย่างไร ให้อธิบายและยกตัวอย่างหลักฐานหรือข้อมูลที่นัหวิทยาศาสตร์ใช้เป็นเหตุผลสนับสนุน
ตอบ  หลักฐานสันเขาใต้สมุทร และร่องลึกใต้สมุทร

 3.เพระเหตุใดปรากฏการณ์ภูเขาไฟระเบิดและแผ่นดินไหว มักเกิดตามเขตมุดตัวของแผ่นธรณีตอบ  บริเวณที่มีการมุดตัวของแผ่นธรณี หินริเวณดังกล่าวจได้รับแรงมากระทำตลอดเวลาทำให้หินตอบสนองต่อแรง โดยเปลี่ยนลักษณะและปลดปล่อยพลังงานออกมาในรูปคลื่นไหวสะเทือนทำให้เกิดแผ่นดินไหว

4.รอยคดโค้ง รอยแตก รอยเลื่อนในหินมีลักษณะเหมือนกันหรือไม่ และเกิดขึ้นได้อย่างไร
ตอบ  รอยคดโค้งในชั้นหิน เป็นระนาบคดโค้งที่พบในชั้นหิน เป็นผลเนื่องจากชั้นหินที่มีสมบัติเป็นพลาสติก ตอบสนองด่อแรงที่มากระทำโดยการเปลี่ยนลักษณะ

5.จากแนวการเลื่อนที่ของแผ่นธรณีต่างๆ จะมีผลต่อภูมิประเทศของโลกในอนาคตอย่างไร
ตอบ  การที่แผ่นธรณีอินเดีย ออสเตรเลียชนกับแผ่นดินยูเรเซีย (แผ่นธรณีเคลื่อนที่เข้าหากัน) ทำให้เกิดเทือกเขาหิมาลัย และเทือกเขาหิมาลัยมีแนวโน้มสูงขึ้นเรื่อยๆ

แบบฝึกหัดบทที่ 1

1.หินต้นกำเนิดของแมกมาส่วนใหญ่อยู่บริเวณอยู่บริเวณชั้นเนื้อโลกตอนบน ให้นักเรียนบอกประเภท และส่วนประกอบของหินต้นกำเนิดแมกมาตอบ  หินอัลตราเมฟิก ส่วนมากประกอบด้วยธาตุเหล็กและนิกเกิล


2.คลื่น P และ S มีความแตกต่างกันอย่างไร
ตอบ  คลื่น P สามารถผ่านตัวกลางได้ทุกสถานะ คลื่น S สามารถผ่านตัวกลางได้เฉพาะของแข็ง


3.เมื่อเกิดแผ่นดินไหว ณ บริเวณใดบริเวณหนึ่ง จะเกิดเขตอับคลื่น S (S Wave shadow zone) ที่ครอบคลุมผิกโลกในบริเวณกว้าง ให้นักเรียนใช้ความรู้เกี่ยวกับสมบัติของคลื่นไหวสะท้อนและโครงสร้างโลก อธิบายปรากฏการณ์ดังกล่าว
ตอบ คลื่น S จะไม่สามารถเคลื่นผ่านชั้นแกนโลกส่วนนอกได้ เนื่องจากแก่นโลกชั้นนอก มีสถานะเป็นของเหลว ดังนั้นเมื่อเกิดแผ่นดินไหว ณ บริเวณใดบริเวณหนึ่ง จะเกิดเขตอับคลื่น S ที่ครอบคลุมผิวโลกที่กว้าง คือเกิดตำแหน่ง 103องศา วัดจากศูนย์เกิดแผ่นดินไหวบริเวณใดบริเวณหนึ่ง